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ABSTRACT

EPIC (Executive Process-Interactive Control) is a cognitive architecture
especially suited for modeling human multimodal and multiple-task perform-
ance. The EPIC architecture includes peripheral sensory-motor processors
surrounding a production-rule cognitive processor and is being used to con-
struct precise computational models for a variety of human-computer interac-
tion situations. We briefly describe some of these models to demonstrate how
EPIC clarifies basic properties of human performance and provides usefully
precise accounts of performance speed.
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1. INTRODUCTION
1]

Cognitive Architectures. A cognitive architecture is a theoretical struc-
ture and set of mechanisms for human cognition, within which models for
specific tasks and phenomena can be constructed. Since the proposals of
Anderson (1976) and Laird, Rosenbloom, and Newell (1986), cognitive
architectures have become recognized as the fundamental theoretical ap-
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proach in cognitive psychology. An architecture proposal is a synthesis of
theoretical concepts that attempts to subsume a variety of specific models
and mechanisms into a single coherent whole. When the architecture is
represented computationally, its implications and applicability can be
easily and rigorously explored and tested. Progress in rigorous cognitive
theory requires the development of mord' comprehensive and accurate

computational cognitive architectures. .

Cognitive Architecture and Human-Computer Interaction (HCI). The
significance of cognitive architectures for the more practical concerns of
HCI and user-interface design lies in two areas. First, to the extent that the
key phenomena of relevance to HCI can be captured in an architecture,
the architecture acts as a codified theoretical summary of the phenomena.
Such a codification can then be learned and applied by HCI researchers
and practitioners much more easily than the traditional approach of study-
ing and attempting to apply a vast collection of isolated phenomena,
individual experimental results, and small-scale models. Second, if the
architecture supports constructing models for tasks easily enough and
makes accurate enough predictions of task performance, the cognitive
architecture then provides a foundation for engineering models for evalu-
ating user-interface designs early in the development process, which can
provide valuable usability information in addition to traditional user test-
ing methods. For example, as discussed by John and Kieras (1996), the
various extant members of the GOMS family of engineering models are
based on some simple cognitive architectures but have been useful in
interface design and evaluation. By developing more sophisticated archi-
tectures that have predictive power in more complex situations, we should
be able to develop more accurate and more comprehensive engineering
models to aid in HCI design.

The EPIC (Executive Process-Interactive Control) Architecture. This
article provides an overview of the EPIC architecture being developed by
Kieras and Meyer for modeling human cognition and performance
(Kieras, Wood, & Meyer, 1997; Meyer & Kieras, 1997a, 1997b). EPIC is
similar in spirit to the Model Human Processor (MHP; Card, Moran, &
Newell, 1983), but EPIC incorporates many recent theoretical and empiri-
cal results about human performance in the form of a software framework
for computer simulation modeling. Using EPIC, a model can be con-
structed that represents the general procedures required to perform a
complex multimodal task as a set of production rules. When the model is
supplied with the external stimuli for a specific task, it will then execute
the procedures in whatever way the task requires, thus simulating a hu-
man’s performing the task and generating the predicted actions in simu-
lated real time. EPIC is an architecture for constructing models of
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performance. It is not-yet a learning system and so has no mechanisms for
learning how to perform a task. Rather, the purpose of EPIC is to repre-
sent in detail the perceptual, motor, and cognitive constraints on the
human ability to perform tasks.

Like most cognitive architectures, EPIC was not develpped primarily
for addressing HCI problems but is a larger scientific endeavor to repre-
sent important theoretical concepts of human intelligense or abilities.
However, because HCI is a subset of human performance, a good pro-
posal for a cognitive architecture should allow one to analyze and compare
interface designs and then recommend and evaluate improvements. At

- this time, EPIC is mainly useful as a research system for exploring human

performance limitations that determine the effects of a particular interface
design, both at low levels of specific interaction techniques and at high
levels of systems that support complex task performance in multimodal
time-stressed domains. In the future, it should be possible to develop
EPIC-based design analysis techniques that can be routinely applied in
system design. .

Organization of This Article. In this article, we describe the rationale
for the development of EPIC, summarize the architecture, and discuss
some important general modeling issues. Then, we illustrate EPIC’s contri-
butions to HCI with a series of application vignettes—brief examples
showing how EPIC can be used in both predictive and explanatory modes
to address both elementary aspects of interface design and complex phe-
nomena related to human interaction with semi-automated systems. We use
these vignettes because our goal in this article is not to exhaustively explore
one application of the EPIC architecture but rather to present and justify
the architecture by illustrating its wide applicability.

2. THE EPIC (EXECUTIVE PROCESS-INTERACTIVE

CONTROL) ARCHITECTURE
2.1. Fundamental Motivations for Developing EPIC
Embodied Cognition

Historically, the proposals for computational models of human cogni-
tion both in cognitive psychology and artificial intelligence have tended to
emphasize the purely cognitive aspects of the human system, finessing the
details of how the human perceives the environment or acts upon it. Such
an approach can be seriously misleading. For example, human visual
capacity to detect and recognize objects is not uniform but varies with the
distance on the retina from the fovea. The retina can be oriented through
a motor system, the oculomotor mechanism, to control what part of the
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visual environment can be accessed in detail. Thus, in many tasks, the
availability of the stimulus depends on the details of when, how, or
whether the eye is oriented toward the stimulus. Likewise, conventional
cognitive theory has tended to assume that, after the human decides to act,
there are no fundamental problems in carrying out the intended action.
However, the human motor system is quite complex in its own right and
interacts strongly with the cognitive and perceptual systems {Rosenbaum,
1991). For example, different movements can take a substantial amount of
time to execute, and this time can depend heavily on the details of the
required movements and the history of previous, possibly interfering,
movements. Furthermore, response execution can make demands on the
perceptual system as well, the most extreme being the need for vision in
aimed movements; thus, making a response may interfere with collecting
the visual information needed for the next part of the task.

More recently, some of the computational cognitive architectures have
begun to be embodicd, to include some of the constraints imposed by the
perceptual-motor system. For example, Newell (1990) explicitly included
such constraints in his outline of a cognitive architecture, and some effort
has been made to include perceptual-motor mechanisms in more recent
work with the Soar architecture (Laird et al., 1986) since its introduction.
Likewise, the ACT-R architecture proposed by Anderson (1993) has
begun to include some perceptual-motor mechanisms. Qur first goal in
developing EPIC is not only to incorporate key facts about human percep-
tual and motor constraints into a theory of human cognition but also to
give the perceptual and motor mechanisms equal status with cognition in
accounting for human performance. Thus, EPIC’s production-rule cogni-
tive processor is surrounded by perceptual and motor processors, whose
time course of processing is represented in some detail based on the
current human performance research literature. How long it takes an
EPIC model to do a task depends intimately on how EPIC’s eyes, percep-
tual mechanisms, and effectors are used in the task. At this level of detail,
the interactions between processors during task execution can be remark-
ably subtle, so the representation of task timing in a computational simu-
lation model is critical to understanding human performance.

Computational Models of Both Performance and Cognition

Our second motivation for developing EPIC is a corollary of the
first—to more fully extend the current cognitive architecture computational
modeling paradigm to the field of human attention and performance.
Although some computationally realized models of human performance
have been available for years (e.g.,, HOS, SAINT; see Elkind, Card,
Hochberg, & Huey, 1989; McMillan et al., 1989), these models generally do
not have the form of cognitive architectures so much as being analytic tools
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for practical system design—a form of the engineering models discussed by

John and Kieras (1996). The field of human performance itself has suffered
from alack of computational modeling, although historically, it is one of the
most extensively researched and most practically useful of psychological
fields. Most research on human performance has been conducted at the
level of qualitative interpretation of empirical results ahd verbally ex-
pressed and evaluated theory. One symptom of this lackfof the detailed
rigor available with computational models is that key issues concerning the
fundamentals of human information processing have remained unresolved
for many years, such as the status of the single-channel-versus-multiple-
resource debate discussed by Meyer and Kieras (1997a). Thus, another goal of
developing EPIC has been to advance the state of psychological theory in a
theoretically underdeveloped area.

An important benefit of working in the human performance domain is
that this empirical literature abounds in quantitative data that typically have
a precision and detail not found in more purely cognitive task domains.
Unlike many traditional cognitive modeling efforts, ours is committed to
obtaining detailed and quantitatively accurate fits to empirical data in a
variety of performance task domains. One reason for making this effort is
that for models of performance to be practically useful in system design
problems, they must be reasonably accurate. A more fundamental reason is
that trying to match detailed data with quantitative accuracy serves as a
powerful constraint in constructing models for phenomena. That is, a key
function of a cognitive architecture is to provide some theoretical constraint
on the possible models (see Newell, 1990). Trying to match detailed quanti-
tative data acts as a further constraint, further reducing the number of
arbitrary decisions to be made in constructing an EPIC model for a task.
The constraints imposed by the combination of the detailed quantitative
effects in the empirical data, the task structure, and the fixed architecture
mean that there are relatively few “degrees of freedom” in constructing a
model that fits well (see Meyer & Kieras, 1997b, for further discussion).

The Executive Process and Multiple-Task Performance

A third motivation for developing EPIC has been to explore the mecha-
nism and the role of executive processes, which control and supervise

other cognitive processes, analogous to the “supervisor” in a computer .

operating system (see Meyer & Kieras, 1997a). Theorists of human per-
formance have presented various proposals about the nature of the execu-
tive process. Unfortunately, thede proposals have usually lacked either a
coherent theoretical basis or a computational representation. These theo-
rists have also often proposed that the executive process is implemented
via some type of special mechanism that sits outside or above the regular
cognitive system and presumably has its own principles of operation.
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However, since proper supervision of behavior is simply a form of skill, we
have sought to represent the executive process in the same way as other
forms of skill—just as the supervisory component of a computer operating
system is just another computer program.

A good approach to understanding both the nature of the executive
process and the details of the human cogditive architecture is to under-
stand multiple-task performance. In multiple-task situations, the human
has to perform two or more tasks simultaneously; the overall task sitaation
can be subdivided into two or more tasks, each of which can be meaning-
fully performed in isolation (one is not a logical subtask of the other), and
the tasks are performed over the same period of time. A good example of
a multiple-task situation occurs in an airplane cockpit; a pilot may need to
simultaneously pilot the aircraft and track an enemy target on a radar
display. The main problem confronting the human is to execute the
independent tasks in a coordinated fashion that meets some constraints on
overall performance, such as giving one task priority over the other.

The literature on multiple-task performance is extensive and is not
summarized here; for a review, see Gopher and Donchin (1986) and Meyer
and Kieras (1997a). Of course, human information processing is limited in
capacity, and a single-channel bottleneck has traditionally been assumed.
Nevertheless, humans can do multiple tasks, sometimes impressively well,
and their ability to do so depends strongly on the specific combinations of
tasks involved. The multiple-resource theory is an attempt to summarize these
dependencies, which pose a fundamental theoretical dilemma about how to
reconcile the complex patterns of people’s multitasking abilities with some
notion that the overall capacity of the human system is limited. With EPIC,
however, we do not make the assumption that central capacity for cognitive
processing is limited. Such an assumption is traditional but lacks both
empirical and metatheoretical justification. In contrast, we assume that
limitations on human ability are all structural; that is, performance of tasks
may be limited by constraints on peripheral perceptual and motor mecha-
nisms or by limited verbal working memory capacity, rather than by a
pervasive limit on cognitive-processing capacity. The executive strategy has
the responsibility of meeting the performance requirements of the tasks in
spite of these structural limitations. »

To meet performance goals, the executive process must coordinate the
use of the perceptual, cognitive, and motor resources of the system so that
the tasks can be conducted with the proper relative priority and speed.
Multiple-task situations stress human capabilities very seriously, and so the
observed patterns of behavior provide clear insights into the abilities and
limitations of the human information-processing system architecture. Yet,
despite the practical importance of multiple-task performance, the empirical
and theoretical understanding of multiple-task performance has been quite
limited. Nevertheless, EPIC models have been successful in accounting with
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unprecedented accuracy for performance in laboratory versions of multiple-
task situations (Kieras & Meyer, 1995; Meyer & Kieras, 1997a, 1997b). In
addition, understanding the allocation of resources in multiple-task situ-
ations contributes to understanding single-task situations; to maximize per-
formance, the executive process must allocate processing resources to
different parts of the single task in a properly coordinated fathion.

'

2.2. Description of the EPIC Architecture
Overview »

Figure 1 shows the overall structure of processors and memories in the
EPIC architecture. At this level, although EPIC bears a superficial resem-
blance to earlier frameworks for human information processing, it incor-
porates a new synthesis of theoretical concepts and empirical results and
so is more comprehensive and more detailed than earlier proposals for
human performance modeling (e.g., MHP, HOS, SAINT; see McMillan
et al., 1989). EPIC is designed to explicitly couple detailed mechanisms
for basic information processing and perceptual-motor activity with a
cognitive analysis of procedural skill—namely, that represented by pro-
duction-system models such as CCT (Bovair, Kieras, & Polson, 1990),
ACT-R (Anderson, 1993), and Soar (Laird et al., 1986). Thus, EPIC has a
production-rule cognitive processor surrounded by perceptual-motor pe-
ripherals; applying EPIC to a task situation requires specifying both the
production-rule programming for the cognitive processor and the relevant
perceptual and motor-processing parameters. EPIC computational task
models are generative, in that the production rules supply general proce-
dural knowledge of the task, and, when EPIC interacts with a simulated
task environment, the EPIC model generates the specific sequence of
serial and parallel human actions required to perform the specific tasks.
Rather than reflecting specific task scenarios, the task analysis reflected in
the model is general to a class of tasks.

The software for constructing EPIC models is currently implemented in
Common LISP, with models typically developed in Macintosh Common
Lisp, and then simulation production runs are executed under Franz
Allegro Common LISP on a fast Unix workstation. All of the models
described or cited in this article have actually been implemented and run
to produce the tlaimed predicted results. Although the simulation soft-
ware is available to interested researchers, as is a detailed technical de-
scription of the architecture,' we*have focused exclusively on developing

the architecture and modeling important tasks that stress the scientific -

accuracy of the architecture. Thus, at this time, EPIC is not packaged in a

1. Available via anonymous ftp at ftp://ftp.eecs.amich.edu/people/kieras/EPICarch.ps.
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Figure 1. Overall structure of the EPIC architecture simulation system. Task perform-
ance is simulated by having the EPIC model for a simulated human (on the right)
interact with a simulated task environment {on the left) via a simulated interface
between sensory and motor organs and interaction devices. Information flow paths
are solid lines; mechanical control or connections are dashed lines. The processors
run independently and in paralle]l both with each other and with the task environ-

ment module. 'R
&_m_ﬁ
- Production Rule
Interproter

Long-Term
Memory

Task
Environment J

“user-friendly” manner; full-fledged LISP programming expertise is re-
quired to use the simulation package, and there is no introductory tutorial
or user’s manual.

The EPIC software framework includes not only the modules for simu-
lating a human but also facilities for simulating the interaction of the
human with an external system such as a computer. Figure 1 shows a
simulated task environment (on the left) and a simulated human as de-
scribed by the EPIC architecture (on the right), with objects such as
simulated screen items and simulated keys making up the physical inter-
face between them. The task environment module assigns physical loca-
tions to the interface objects and generates simulated visual events and
sounds that the computer or other entities in the environment produce in
response to the simulated human’s behavior. Having a separate environ-
ment simulation module greatly simplifies the programming of a complete
simulation and helps enforce the generality of the procedural knowledge
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represented in the EPIC model. That is, the task environment module is
driven by a task instance description that consists only of the sequence and
timing of events external to the human user, and the simulated user must
deal with whatever happens in the simulated task environment.

With regard to the EPIC architecture itself (as shown in F igure 1), there
is a conventional flow of information from sense organs, rough percep-
tual processors, to a cognitive processor (consisting of a production rule
interpreter and a working memory), and finally to motor processors that
control effector organs. EPIC goes beyond MHP by specifying separate
perceptual processors with distinct processing-time characteristics for each
sensory modality and separate motor processors for vocal, manual, and
oculomotor (eye) movements. There are feedback pathways from the mo-
tor processors, as well as tactile feedback from the effectors, which are
important in coordinating multiple tasks. The declarative-procedural
knowledge distinction of the “ACT-class” cognitive architectures (e.g., An-
derson, 1976) is represented in the form of separate permanent memories
for production rules and declarative information. Working memory (WM)
contains all of the temporary information needed for and manipulated by
the production rules, including control items such as task goals and se-
quencing indices, and also conventional WM items, such as representations
of sensory inputs. WM has separate partitions for different types of informa-
tion, such as auditory WM, visual WM, the control store, and so forth. The
structure of WM and the properties of the processors are described in more
detail later. When numeric values are given for various time parameters,
they are labeled as either standard values that we assume are fixed in all
applications of the architecture or #ypicalvaluesthat may vary depending on
the properties of a specific task situation. Standard values are based on our
reading of the human performance literature; although they may be revised
and refined, they are supposed to hold across all applications of the archi-
tecture. The nonstandard parameter values need to be estimated to model
a specific task, but we hope that, with additional modeling experience and
focused empirical studies, collections of typical parameter values will be-
come available for use in constructing new models.

Perceptual Processors

A single stimulus input to a perceptual processor can produce multiple
outputs to be deposited in WM at different times. The perceptual proces-
sors in EPIC are simple “pipelines,” in that an input produces an output at
a certain later time, with no “mbving window” time-integration effect as
assumed by MHP. The tactile perceptual processor handles movement
. feedback from effector organs; this feedback can be important in coordi-
nating multiple tasks (Meyer & Kieras, 1997a, 1997b) but is not elaborated
further here.
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Visual Processor. EPIC’s model of the eye includes a retina that
determines what kind of sensory information is available about visual
objects in the environment based on the distance (in visual angle) on the
retina between the object and center of the fovea. EPIC’s current highly
simplified model of the retina contains three zones, each with a standard
radius: the fovea (1°), the parafovea (10°), 4nd the periphery (60°). Certain
information (e.g., contents of character strihgs) might be available only in
the fovea, whereas cruder information (e.g., whether an area of thé screen
is filled with characters) is available in the parafovea. Only severely
limited information (e.g., location of objects; whether an object has just
appeared) is available in peripheral vision. Of course, the exact availabil-
ity of visual information in different areas of the retina depends on the
specific physical properties of the stimulus. For example, a large isolated
character might be discriminable many degrees away from the fovea,
while reading words embedded in text displayed in small type would
require that the words be in or very close to the fovea. Unfortunately, the
human performance literature does not appear to contain a body of
well-parameterized results on the properties of nonfoveal vision, meaning
that the exact time and availability parameters of visual stimuli must be
estimated for new task-specific models.

In EPIC’s visual working memory, the visual perceptual processor
maintains a representation of which objects are visible and what their
properties are. Visual working memory is “slaved” to the visual situation;
it is kept up-to-date as objects appear, disappear, change color, and so
forth or as eye movements or object movements change what visual
properties are available from the retina. In response to visual events, the
visual processor can produce multiple outputs with different timings.
When an object appears, the first output is a representation that a percep-
tual event has been detected (standard delay = 50 msec), followed later by
a representation of sensory properties (e.g., shape; standard delay = 100
msec) and still later by the results of pattern recognition, which might be
task-specific (e.g., a particular shape represents a left-pointing arrow;
typical delay = 250 msec).

Auditory Processor. The auditory perceptual processor accepts audi-
tory input and then outputs to working memory representations of audi-
tory events (e.g., speech) that disappear after a time. For example, a short
tone signal produces, first, an item corresponding to the onset of the tone
(standard delay = 50 msec); then, later, an item corresponding to a
discriminated frequency of the tone (typical delay = 250 msec); and, last,
an offset item (standard delay = 50 msec). For simplicity, such items
simply disappear from memory after a fixed time (typical delay = 4 sec).

Speech input is represented as items for single words in auditory work-
ing memory. The auditory perceptual processor requires a certain time to
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recognize input words (typical delay = 150 msec after acoustic stimuli are
present) and produces representations of them in auditory working mem-
ory. These items then disappear after a time, the same as other auditory
input. To represent the sequential order of the speech input, the items
contain arbitrary symbolic tags for previous item and next item that link
the items in sequence. Thus, a speech input word carries a &ertain next-tag
value, and the next word in the sequence is the item that contains the same
tag value as its previous tag. Using these tags, a set of production rules can
step through the auditory working memory items for a series of spoken
words, processing them one at a time. For example, one of the models
described in this article processes a spoken telephone billing number by
retrieving the recognized code for each digit in the tag-chained sequence
and using it to specify a key press action. Available empirical literature on
auditory perception lacks comprehensive results, so many auditory per-
ceptual parameters must be estimated during task-specific model
construction. ‘

Cognitive Processor

Production Rules and Cycle Time. The cognitive processor is pro-
grammed in terms of production rules, and so an EPIC model for a task
must include a set of production rules that specify what actions in what
situations are performed to do the task. Example production rules for the
models described in this article are presented later. EPIC uses the parsi-
- monious production system (PPS) interpreter, which is especially suited to
task modeling work (Bovair et al., 1990). PPS rules have the format
(<rule-name> IF <condition> THEN <actions>>). The rule condition can test only the
contents of the production-system working memory. The rule actions can
add and remove items from working memory or send a command to a
motor processor.

The cognitive processor operates cyclically. At the beginning of each
cycle, the contents of working memory are updated with the output from
perceptual processors and the previous cycle’s modifications; at the end of
each cycle, the contents of the production-system working memory are
updated, and commands are sent to the motor processors. The mean
duration of a cycle is a standard 50 msec. The cognitive-processor cycles

are not synchronized with external stimulus-and-response events. Inputs

from the perceptual processors are accessed only intermittently, when the
production-system working memory is updated at the start of each cycle.
Any input that arrives during the course of a cycle must therefore wait
temporarily for service until the gext cycle begins. This is consistent with a
variety of phenomena, such as the apparent temporal granularity of per-
ceived stimulus successiveness (Kristofferson, 1967). EPIC also can run in
a mode in which the cycle duration is stochastic, with a standard mean
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value of 50 msec and all other time parameters scaled to this stochastic
value; the variance of the stochastic distribution of cycle time is chosen to
produce a coefficient of variation of about 20% for a simple reaction time,
corresponding to the typical observed value.

Cognitive Parallelism. Most traditiond production-system architec-
tures require that only one production ruletan be fired at a time and that
only its actions will be executed. Should more than one rule have matching
conditions, some kind of conflict-resolution mechanism is required to choose
which rule to fire. Soar (Laird et al., 1986) is perhaps the most complex, in
that the production rules only propose operators to apply, and so many rules
can be fired at once, and then a separate process decides which single
candidate operator to apply. However, PPS has a radical and very simple
policy: On each cognitive-processor cycle, PPS will fire all rules whose
conditions match the contents of working memory and will execute all of
their actions. Thus, EPIC models may have true parallel cognitive process-
ing at the production-rule level; multiple “threads” or processes can be
represented simply as sets of rules that happen to run simultaneously.

The multiprocessing ability of the cognitive processor, together with the
parallel operation of all the perceptual-motor processors, means that EPIC
models for multiple-task performance do not incorporate a gratuitous as-
sumption of limited central-processing capacity or of a central-processing
“bottleneck.” It is critical to be clear on exactly what is or is not being
claimed. Although EPIC has no built-in limit on how many strategies or
processes the cognitive processor can be executing simultaneously, the rate
of execution is limited, the perceptual-motor mechanisms are of course
limited, and any memory mechanisms involved in the task are limited. For
example, the reason why a person cannot perform two long divisions in his
or her head simultaneously is that a limited structural resource is in-
volved—namely, verbal short-term memory. For example, the eyes can
fixate on only one place at a time, and the two hands are bottlenecked
through a single processor. Thus, a task that demands manual responses to
visual stimuli distributed over a wide space will result in severely limited
human performance, even if the purely cognitive demands are trivial. In
contrast, people can, and often do, perform multiple cognitive tasks simul-
taneously, such as collecting one’s slides while answering questions at the
end of a talk, as long as the strategies are otherwise compatible.

Omitting a central-capacity limit or bottleneck might seem to be a
radical recasting of conventional cognitive theory, but this claim is actu-
ally consistent with a long-standing line of empirical and theoretical dis-
cussion in the human performance field that challenges the traditional
assumption of limited central capacity (see Meyer & Kieras, 1997a). Our
own detailed quantitative modeling of a variety of multiple-task data
(Meyer & Kieras, 1997b) shows that EPIC’s assumptions about the nature




E——

404 KIERAS AND MEYER

of cognitive and perceptual-motor limitations are quite consistent with a
large variety of empirical data.

This decision about the nature of human limitations is also a matter of
scientific tactics: Our theoretical strategy has been to make some radical
simplifying assumptions and then explore their consequences through
modeling, complicating the architecture only as required: Thus, we start
with the known limitations of human memory and perceptual-motor
mechanisms and adopt less apparent limitations only if the data compel us.
Thus far, our simple and radical set of assumptions about the nature of
multiple-task processing limitations has held up well.

Working Memory. EPIC’s production-system working memory is in
effect partitioned into several working memories.? Visual, auditory, and
tactile memory contain the current information produced by the corre-
sponding perceptual processors. The timing and duration of these forms of
working memory are described earlier. Motor working memory contains
information about the current state of the motor processors, such as
whether a hand movement is in progress. This information is updated on
every cycle.

Two other forms of working memory deserve special note. These forms
are amodal, in that they contain information not directly derived from
sensory or motor mechanisms. One amodal working memory is the control
store, which contains items that represent the current goals and the current
steps within the procedures for accomplishing the goals. An important
feature of PPS is that control information is simply another type of working
memory item and so can be manipulated by rule actions; this is critical for
modeling multiple-task performance, in that production rules for an execu-
tive process can control subprocesses by manipulating the control store.

The second amodal working memory, simply termed “general WM,”
can be used to store miscellaneous task information. At this time, EPIC
does not include assumptions about the decay, capacity, and repre-
sentational properties of general working memory. Our research strategy
in developing EPIC has been to see what constraints on the nature of this
general WM are required to model task performance in detail rather than
to follow the customary strategy in cognitive modeling of assuming these

2. EPIC’s working memory structure is not “hard-wired” into PPS. PPS actu-
ally has only a single working memory, which could more clearly be termed the
database for the production rules. PPS can be used as a multiple-memory system
simply by following a conventioh such as the first term in a database item
indicating the “type” of memory jtem, as in the examples later in this article.
Likewise, the format of items in working memory or the required contents of rule
conditions are not fixed in the architecture; we have preferred to develop such
restrictions through modeling experience rather than prematurely prescribe them
in the architecture.
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constraints in advance. Such capacity and loss assumptions for these
memory systems do not seem to be required to account for the time course
of performance in tasks modeled in EPIC thus far; other limitations
determined by the perceptual and motor systems appear to dominate
performance. These latter substantial but underappreciated limitations
would have been obscured by gratuitous #ssumptions about central-proc-
essing capacity or working memory (see Méyer & Kieras, 1997a, 1997b, for
more discussion). For similar reasons, at this time EPIC assumes that
information is not lost from the control store, and there is no limit on the
capacity of the control store. Research is underway to explore how loss or
corruption of information in EPIC’s working memories might account for
the occurrence and properties of human errors during task performance.

Motor Processors

The EPIC motor processors are much more elaborate than those in the
MHP, producing a variety of simulated movements of different effector
organs and taking varying amounts of time to do so. As shown in Figure 1,
there are separate processors for the hands, eyes, and vocal organs, and all
can be active simultaneously. The cognitive processor sends a command
to a motor processor that consists of a symbolic name for the type of
desired movement and any relevant parameters, and the motor processor
then produces a simulated movement with the proper time characteristics.
The various processors have similar structures but different timing proper-
ties and capabilities based on the current human performance literature in
motor control (Rosenbaum, 1991). The manual motor processor has many
movement forms, or styles, but the two hands are bottlenecked through a
single manual processor, and so normally can be operated either one at a
time or synchronized with each other. The oculomotor processor gener-
ates eye movements either upon cognitive command or in response to
certain visual events. The vocal motor processor produces a sequence of
simulated speech sounds given a symbol for the desired utterance.

Movement Preparation and Execution. The various motor processors
represent movements and movement generation in the same basic way.
Current research on movement control (Rosenbaum, 1980, 1991) suggests
that movements are specified in terms of movement features, and the time
to produce a movement depends on its feature structure as well as its
mechanical properties. ‘

The overall time to complete a movement can be divided into a
preparation phase and an execution phase. The preparation phase begins
when the motor processor receives the command from the cognitive
processor. The motor processor recodes the name of the commanded
movement into a set of movement features, whose values depend on the
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style and characteristics of the movement, and then generates the features,
taking a standard 50 msec for each one. The time to generate the features
depends on how many features can be reused from the previous move-
ments (repeated movements can be initiated sooner) and how many
features have been generated in advance. After the features are prepared,
the execution phase begins with an additional standard Jélay of 50 msec
to initiate the movement followed by the actual physical \novement. The
time to physically execute the movement depends on its mechanical
propeities both in terms of which effector organ is involved (e.g., eye vs.
hand) and type of movement to be made (e.g., one-finger flexion to press
a button under the finger vs. a pointing motion with a mouse).

The movement features remain in the motor processor’s memory, so
future movements that share the same features can be performed more
rapidly. However, there are limits on whether features can be reused; for
example, if a new movement is different in style from the previous move-
ment, all of its features must be generated anew. Also, if the task permits
the movement to be anticipated, the cognitive processor can command the
motor processor to prepare the movement in advance by generating all of
the required features and saving them in motor memory. Then, when it is
time to make the movement, only the initiation time is required to com-
mence the mechanical execution of the movement.

Finally, a motor processor can prepare the features for only one move-
ment at a time and will reject any subsequent commands received during
the preparation phase, but the preparation for a new movement can be
done in parallel with the physical execution of a previously commanded
movement. Once prepared, the movement features are saved in motor
memory until the previous execution is complete, and the new movement
is then initiated. The cognitive-processor production rules can exploit this
capability by sending a motor processor a new movement command as
soon as it is ready to begin preparing the features for the new movement.
The result can be a series of very rapid movements whose total time is little
more than the sum of their initiation and mechanical execution times.

An Example of Molor-Processor Operation. To strike a key using a
one-finger peck movement style (like that used in “hunt-and-peck” typing),
the cognitive processor commands the manual motor processor to per-

form a peck movement with a finger (e.g., the right index) to a specified

object in the physical environment (the key). This movement style in-
volves five features: peck style, hand, finger, direction, and extent of
motion, which is the distance Hetween the current location of the desig-
nated finger and the location of the target object. If a previous movement
was also a peck movement with the same hand and finger, only the
direction and extent might have to be generated anew. If the movement is
also similar in direction and extent to the previous movement, then all of
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the features could be reused; none would have to be generated anew. After
the features are generated, the movement is initiated. The time required to
physically execute the movement to the target is given by Welford’s form
of Fitts’ law (see Card et al,, 1983, chap. 2), with a standard minimum
execution time of 100 msec, reflecting th:’t, for small movements to large
targets, there is a physiologically determined lower bound on the actual
duration of a muscular movement. After the simulated finger hits the key,
it is left in the location above the key to await the next moveraent. -

Manual Motor Processor. EPIC’s manual motor processor represents
several movement styles, including punching individual keys or buttons
already known to be below the finger, pecking keys that may require some
horizontal motion, posing the entire hand at a specified location, pattering
two-finger movements one after the other, poking at an object (e.g., on a
touch screen), pointing at an object with a mouse, and plying a control
(e.g., a joystick) to position a cursor onto an object. Each style of move-
ment has a particular feature structure and an execution-time function that
specifies how long the mechanical movement takes to actuate the device
in the task environment.

Vocal Motor Processor. EPIC’s vocal motor processor is not very
elaborated at this time; it is based on the minimal facilities needed to
model certain dual-task situations (see Meyer & Kieras, 1997a, 1997b). A
more complete version of the vocal motor processor would be able to
produce extended utterances of variable content, taking into account that
the sequential nature of speech means that movements can be prepared on
the fly during the ongoing speech. The current version of EPIC assumes
that simple fixed utterances can be designated with a single symbol and
require only the preparation of two features before execution begins. The
actual production of the sound is assumed to be delayed by about 100
msec after initiation and continues for a time determined by the number
of syllables in the words. Further development of the vocal motor proces-
sor is planned for the future.

- Oculomotor Processor. EPIC’s eye movements are produced in two
modes, voluntary and involuntary (reflexive). The cognitive processor
commands voluntary eye movements, which are saccades to a designated
object. A saccade requires generation of up to two features, the direction
and extent of the movement from the current eye position to the target
object. Execution of the saccade currently is estimated to require a stand-
ard 4 msec per degree of visual angle. The oculomotor Jprocessor also
makes involuntary eye movements, either saccades or small smooth ad-
justments in response to the visual situation (hence the arrow between the
visual perceptual processor and the oculomotor processor in Figure 1). A
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sudden onset (appearance) of an object can trigger an involuntary saccade.
The fovea being somewhat off-center on an object will produce a “center-
ing” movement, which will automatically help zero in on an object after a
saccade. Also, the eye will automatically follow a slowly moving object
using smooth movements and occasional small saccades (c':f. Hallett, 1986).
In some of the tasks presented later in this article, EPIC can follow moving
objects with a mixture of voluntary and involuntary eye faovements. The
partial autonomy of the oculomotor processor permits the cognitive proc-
essor to choose an object to examine, command that the eye be moved to
it, and then leave the details of keeping it centered on the fovea to the
oculomotor processor.

2.3. Constructing Models in EPIC
Constraints on Model Construction

Fixed Architecture, Variable Strategies. The presentation of any mod-
eling approach should document what aspects or parameters of the mod-
eling framework are fixed and are thus supposed to generalize across
applications and what aspects or parameters have to be adjusted to fit the
data or estimated from data specific to the situation being modeled. In
EPIC, the most important fixed aspect is the connections and mechanisms
of the EPIC processors, which are supposed to apply without modification
across task domains. Our models are thus built by “programming” a fixed
and comprehensive architecture with a task strategy expressed in produc-
tion rules executed by the cognitive processor. We always attempt to
explain phenomena in terms of task-specific cognitive strategies before
changing the architecture itself. Thus, the key aspect of EPIC that is free
to vary in a task-specific way is the task-specific production-rule program-
ming, which is constrained to some extent because it must be written to
execute the task correctly and reasonably efficiently.

Fixed and Free Parameters. The fixed parameters are most time pa-
rameters in the processors and the feature structure of the motor proces-
sors for individual styles of movement. The model properties and
parameters that are then free to vary from model to model or task to task

are, first, the task-specific sensory availabilities and perceptual encoding

types and times involved in the task (constrained to be similar and con-
stant over similar perceptual events) and second, the styles of movement
used to control the device (e.g.,'touch-typing vs. visually guided pecking),
if they are not constrained by the task.

Model Inputs and Outputs. Similarly, any modeling approach should
document what information the model builder has to supply in order to
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construct the model and what information the constructed model, will
then produce in return for the supplied information. To construct an EPIC
model, the model builder has to supply the information corresponding to
the three free parameters just described—namely:

1. A production-rule representation o£ ;the task procedures.

2. Task-specific sensory availabilities and perceptual-processor encod-
ings and timings. L

3. Any movement styles not determined by the task requirements.

In addition, the model builder must supply:

4. The simulated task environment, which includes the physical loca-
tions and characteristics of relevant objects external to the human.

5. A set of task instances whose execution time is of interest; these
instances must specify only environmental events and their timing
and are used to control only the environment module of the
simulation.

In return for these inputs, the EPIC model will interact with the
simulated task environment, generating the predicted sequences of simu-
lated human actions required by each task instance and the predicted time
of occurrence of each action. If the production rules were written to
describe general procedural knowledge of how to perform the task, these
predictions can be generated for any task instance subsumed by these
general procedures.

Modeling Multiple Tasks and Executive Processes

The Executive Process. Some theorists of multiple-task performance
postulate an executive-control process that coordinates the separate multi-
ple tasks (e.g., Norman & Shallice, 1986). We do likewise, but a key feature
of our approach is that the executive-control process is just another set of
production rules. These rules can control other task processes by manipu-
lating information in the control-store partition of the production-system
working memory. For example, we assume that each task is represented by
a set of production rules that have the task goal appearing in their condi-
tions, and 50 an executive-process rule can suspend a task by removing its
governing goal from the control store and then cause it to resume opera-
tion by reinserting the goal. Also, the executive process can cause a task to
follow a different strategy by placing in general WM an item for which task
rules test, thus enabling one set of rules and disabling another. In addition,
the executive process may control sensory and motor peripherals directly
(e.g., moving the eye fixation from one point to another) in order to
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allocate these resources between two tasks. Thus, rather than postulating
an executive control mechanism that is somehow different in kind than
other cognitive mechanisms, EPIC has a uniform mechanism for the
control of behavior both at the executive level and at the detailed level of
individual task actions. As a corollary, learning how to coordinate multiple
tasks is simply learning another (possibly difficult) skifl, as has been
proposed by some recent investigators (e.g., Gopher, 1993).

Modeling Elementary Multiple Tasks. Our first work with EPIC fo-
cused on the simplest and most heavily studied dual-task situation in the
research literature, the so-called psychological refractory period (PRP)
procedure. The PRP procedure consists of two temporally overlapping
choice reaction-time tasks; the subject is instructed to make the response
for the first task before making the response for the second task. The
primary measure of interest is the reaction time (RT) for the second task,
which may be affected by the temporal spacing between the two task
stimuli. The basic empirical result is that the second response is substan-
tially delayed as the spacing between the two stimuli decreases. The
conventional interpretation of this effect (the PRP effect) is that the human
has a central response-selection bottleneck, and so the second response
cannot be selected or initiated until the first response has been made.
However, the details of the effect, and how it depends on other factors
such as the stimulus and response modalities of the two tasks, form a
complex pattern that has never been satisfactorily explained in any detail.

Meyer and Kieras (1997a, 1997b) provided an exhaustive treatment of
the PRP effect using EPIC simulations, and mathematical analyses based
on them, to account quantitatively for the results in many published and
new experiments. This account interprets the PRP effect as a product of
task strategy rather than as a “hard-wired” central bottleneck. In order to
conform to the task instructions, subjects must adopt a strategy that post-
pones initiating the second response until they can ensure that it does not
occur before the first response; the magnitude of the delay in the second
response depends on how much of the second-task processing can be
overlapped with the first task, which in turn depends on the details of the
task structure (e.g., whether eye movements are required), the task diffi-
culty, and the task modalities. The EPIC architecture captures the relevant

constraints very well; Meyer and Kieras were able to construct models that =

accounted for the specific patterns of effects in quantitative detail am.i that
revealed the underlying structure of the phenomena. Details and a discus-
sion of recent experiments claiming to refute the EPIC account of PRP are
available in Meyer and Kieras (1997a, 1997b).

Lessons From Multiple-Task Modeling. An immediate insight from
the application of the EPIC architecture to multiple-task domains is that
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there are many possibilities for performing task activities in parallel. That
is, in dual-task models using EPIC, the role of the cognitive strategies in
coordinating activity between the two tasks is critical to accounting for the
observed effects, and, in many situations, these strategies are surprisingly
subtle and efficient. In dual-task experiments, the subject is supposed to
complete each of two tasks as rapidly as pbssible, but the higher priority
task must be completed before the lower Priority task, regardless of the
relative speed of the perceptual or motor processing involved:in.the two
tasks. If two tasks require the same motor processor, both perceptual and
cognitive processing on the lower priority task can go on while the higher
priority task is allowed to control the motor processor. After the motor
processor has commenced execution of a higher priority response, the
lower priority task can be given control of the motor processor, thereby
honoring the task coordination requirements while maximizing speed. If
the two tasks involve different motor modalities, portions of the lower
priority response can be prepared in advance, so that this response can be
made more quickly when its turn comes. If the two tasks compete for the
use of both the eyes and the hands, the executive rules can dynamically
switch control of the two processors between the two tasks so that their
processing is interleaved, minimizing idle time. Thus, in a dual-task situ-
ation, the cognitive-processor strategies are responsible for allocating the
eyes and the motor processors to the two tasks as needed to maximize
overall performance. Similarly, in a single multimodal task with a require-
ment for speed, the task strategy is responsible for ensuring that the
individual processors do their work as soon as possible so as to minimize
the total time required for the task.

The Need for Modeling Policies

Model Fitting Versus Performance Prediction. There are multiple
possibilities for how activities in a multimodal task can be overlapped
under the EPIC architecture. One way to identify the specific strategy that
governs overlapping in a task is to propose a strategy, generate predicted
performance under that strategy, compare the predicted performance to
empirical data, and repeat until the predicted data match the empirical
results. In typical scientific cognitive modeling work devoted to verifying
a cognitive architecture and understanding how a task might be done, it is
acceptable to arrive at task strategies in this post hoc model-fitting mode.
However, after scientific work on cognitive architectures has progressed
beyond simple demonstrations of feasibility, success at a priori prediction
is required to fully establish the architecture on scientific grounds and to
use the architecture in practical settings to analyze the merits of alternative
designs. Predicting performance on an a priori basis requires not only a
usefully accurate cognitive architecture but also a set of modeling policies




412 KIERAS AND MEYER

for how to choose and represent task strategies on an a priori basis.
Developing such policies can only be done by systematically charac-
terizing the space of possible models and testing their accuracy; an exam-
ple was reported by Kieras et al. (1997), who modeled a task previously
studied by Gray, John, and Atwood (1993). .

An Example of Performance Prediction via Modelikg Policies. 1In
Kieras et al. (1997), EPIC was used to predict performance in a well-prac-
ticed multimodal task: Telephone operators collect billing numlfers spo-
ken by customers, enter the numbers into a computer workstation, anfi
verify the numbers before allowing the call to proceed. The volume of this
work is such that saving a few seconds of work time per call is worth
millions of dollars annually in labor costs. Human operators normally
overlap speaking and listening to the customer with strik%ng keys and
watching for information to appear on the screen. The time taken to
handle the call is not simply the sum of the individual activity times but is
a complex function of which activities can be overlapped and to what
extent. Our EPIC models were constructed on an a priori basis followin.g
several modeling policies that start with a simple procedural task analysis
which is then translated in a standardized format into a set of EPIC
production rules. The predicted task execution times were accurate within
10% to 14%, which is useful in an engineering context. The EPIC architec-
ture accurately represents the perceptual and motor constraifxts’in thf: task,
making it possible to easily construct a model on an a priori basis that
predicts the task time accurately enough to aid in choosing betwee_n
alternative designs. The effort required to construct the EPIC mod:sls is
fairly modest. In return, the resulting EPIC models can generate predicted
execution times for all possible task instances within the scope of the
model. Thus, EPIC models appear to be efficient engineering models for
multimodal high-performance tasks.

3. EXAMPLES OF APPLYING EPIC TO
HUMAN-COMPUTER INTERACTION

Our goal in this article is to present the EPIC architecture anq shoYv
how it can be applied to a variety of problems in HCI. Thus,' in this
section, we emphasize the variety by presenting a series ot: vignettes
illustrating current applications of EPIC to various HCI situations, rang-
ing from low-level interactior; phenomena to complex interat’:txons with
visual displays in dual-task settings. Two recurring themes in this work are
the critical role of visual layout and eye movements and the importance of
parallel processing or multitask execution, even in simple situations.
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3.1. Selecting Items From Menus

Choosing items from a pull-down menu with a mouse is a standard
feature of many current interfaces. However, the research and practical
design literature does not contain a comprehensive or even very explicit
model of how such menu access is done. Affirst glance, it would seem that
the user must first visually scan the list of méhu items, looking at each one in
turn, and when the desired item is found, make a movement with the mouse
to position the cursor there. Other authors (e.g., Sears & Shneiderman, 1994)
have made other proposals for menu search that are rather more elaborate
but without detailed empirical support, and there is even some support for
the notion that menu search can be completely random (Card, 1984),
although other results appear to refute it (Lee & MacGregor, 1985). EPIC
can be used to represent different hypotheses about how users select menu
items, and the predicted results can then be compared to data with high
precision. Working with us, Anthony Hornof has begun to model menu
access as part of a larger program of research on visual search and visual
layout. Hornof’s first results suggest that EPIC can be used to address a
variety of visual issues in interface design (see also Hornof & Kieras, 1997).

Hornof has modeled performance in a task that was one condition of an
experiment by Nilsen (1991) in which subjects selected items from a
pull-down menu. In Nilsen’s experiment, the subject was shown a digit,
and then he or she clicked on a target. This would cause a vertical menu
of the digits 1 to 9 to appear in a random order below the cursor position.
The subject then pointed to and clicked on the previously designated digit
in the menu. The time to select a digit as a function of its location in the
randomly ordered menu was fairly linear, with a slope of about 100 msec
per item; similar results have been obtained elsewhere.

Serial-Search Model

Hornof constructed a serial-search model for menu-item selection that
corresponds to the one-at-a-time hypothesis of visual search. The eye is
moved to the next object down the menu, and if that object matches the
sought-for item, a pointing movement is initiated to the item; otherwise,
the eye is moved to the next object. Figure 2 shows the key production
rules in this model. First, the rule IF-NOT-TARGET-THEN-SACCADE-ONE-ITEM waits for
the current visual object (bound to the variable 20BJECT) to have a text LABEL
property in visual working memory and fires if this label does not match
the sought-for label bound to the variable INT. If this rule fires, the DELDB
action (delete from the production-system database) and the ADDDB action
(add to the database) update the production-system database to make the
object below the current item be the new current item, and the SEND-T0-MOTOR
action instructs the ocular motor processor to move the eye to this object.
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Figure 2. Production rules from the serial search model of menu selection. The first
rule repeatedly moves the eye down the menu as long as the text label for the menu
item fails to match the sought-for item in working memory. If a matching item is
found, the second rule points the mouse cursor to it.

(IF-NOT-TARGET-THEN-SACCADE-ONE-ITEM ,
;
((GOAL DO NENU TASK) '
(STEP VISUAL-SEARCH)
(WM CURRENT-ITEN IS J0BJECT)
(VISUAL 20BJECT IS-ABOYE INEXT-OBJECT)
(NOT (VISUAL 20BJECT IS-ABOVE NOTHING))
(MOTOR OCULAK PROCESSOR FREE)
(VISUAL 208{ECT LABEL INT)
(NOT (WM TARGET-TEXT 15 24T)))
THEN
((DELDB (WM CURRENT-ITEM IS 208JECT))
(ADDDB (WM CURRENT-ITEN IS INEXT-OBJECT))
(SEND-TO-MOTOR OCULAR MOYE INEXT-OBJECT)))

(TARGET-IS-LOCATED-BEGIN-MOVING-MOUSE
I
((GOAL DO MENU TASK)
(STEP VISUAL-SEARCH)
(WM TARGET-TEXT 15 71)
(VISUAL TARGET-OBJECT LABEL 1T)
(WM CURSOR I 2CURSOR-OBJECT)
(MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP VISUAL-SEARCH))
(ADDDB (STEP MAXE RESPONSE))
(SEND-TO-MOTOR MANUAL PERFORN
POINT RIGHT 2CURSOR-OBJECT TTARGET-OBJECT)))

When the text label for this object becomes available, the rule might fire
again. However, if the text label for the object matches the sought-for
label, the rule TARGET-IS-LOCATED-BEGIN-MOVING-MOUSE will fire next instead. This
rule disables both itself and the first rule from firing again by removing the
(STEP VISUAL-SEARCH) item from the database, enables the next step in the
procedure by adding a STEP item, and sends the manual motor processor an
instruction to, perform a right-hand movement using the POINT style that
positions the mouse cursor onto the target; the execution time follows
Fitts’ law (see earlier; Card et gl., 1983).

Applying this model to Nilsen’s (1991) task requires estimating a parame-
ter for how long it takes to recognize the text label for the digits and where
on the retina this recognition could be done. Hornof assumed that the digit
recognition could be done only in the fovea and that it required 200 msec
per digit—a value that had been used for similar stimuli in models for other
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Figure3. Observed and predicted menu selection times. Observed times (solid points
and lines) are from Nilsen (1991); predicted times (open points and dotted lines) are
explained in the text.
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domains. EPIC was run in a simulated version of Nilsen’s experiment, and
predicted menu selection times were obtained. As shown in Figure 3, the
serial-search model seriously misfits the data by predicting a slope of about
380 msec per item, far larger than the observed value of about 107 msec.
The reason for the discrepancy is that, according to the EPIC architecture,
the serial-search model will require an estimated time of at least 200 msec
for the perceptual process to identify the menu item, about 50 msec for a
cognitive-processor production rule to fire to initiate the eye movement to
the next item, and due to the savings from repeated similar movements,
only slightly more than about 50 msec for each subsequent eye movement.
Even if the perceptual processing takes much less time (e.g., only 100 msec),
the oculomotor and cognitive times are still too long to produce a slope as
shallow as 100 msec. In summary, data such as Nilsen’s are extremely
difficult to reconcile with a model that assumes a strategy of sequentially
fixating and deciding about each menu item separately.

Overlapping-Search Model

Hornof next developed a more sophisticated strategy that more fully
exploits the parallelism possible in EPIC. A scanning process moves the
eye from one item to the next, relying on the parallel perceptual process-
ing “pipeline” to complete the recognition processing of each item. Mean-
while, a separate matching rule waits for the sought-for item to be
recognized and appear in working memory; then, it stops the scan and
initiates the mouse movement. The relevant rules are shown in Figure 4.
The production rule SACCADE-ONE-ITEN moves the eye from item to item as
rapidly as possible. Because the movements are repeated, the oculomotor




Figure 4. Production rules from the overlapping-search model. The first rule moves
the eye rapidly down the menu, regardless of whether a matching item is present.
The second rule halts the scan if a matching item appears in visual working memory
and enables the third rule, which moves the eye back to the matching item and
launches the mouse-pointing movement to it.

(SACCADE- ONE-1TEM ’
I
((GOAL DO MENU TASK)
(STEP YISUAL-SWEEP)
(WM CURRENT-ITEM IS 20BJECT)
(VISUAL 20BJECT 15-ABOVE 2KEXT-0BJECT)
(NOT (VISUAL 0BJECT 15-ABOYE NOTHING))
(MOTOR OCULAR PROCESSOR FREE)
)
THEN
((DELOB (WM CURRENT-ITEN IS 208BJECT))
(ADDDB (WM CURRENT-ITEN IS 2NEXT-OBJECT))
(SEND-TO-MOTOR OCULAR MOYE 2NEXT-OBJECT)))

(STOP-SCANNING
If
((GOAL DO MENY TASK)
(STEP VISUAL-SWEEP)
(WM TARGET-TEXT 15 7T)
(VISUAL ITARGET-OBJECT LABEL IT))
THEN
((DELDB (STEP VISUALSWEEP))
(ADDDS (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET))
(ADDDB (W TARGET-OBJECT IS TARGET-OBJECT)))

(MOVE-GAZE-AND-CURSOR-TO-TARGET
If
((GOAL DO MENY TASK)
(STEP MOVE-GAZE-AND-CURSOR-TO-TARGET)
(WM TARGET-OBJECT IS TTARGET-OBJECT)
(WM CURSOR IS 2URSOR-OBJECT)
(MOTOR OCULAR PROCESSOR FREE)
(MOTOR MANUAL MODALITY FAEE)
THEN
((DELDB (STEP MOVE-GAZE-AND-CURSOR-TO-TANGET))
(ADDDB (STEP MAKE RESPONSE))
(SEND-TO-MOTOR OCULAR MOVE TTARGET-OBJECT)
| (SEND-TO-MOTOR MANUAL PERFORM
‘ POINT RIGHT 2CURSOR-OBJECT ITARGET-OBJECT)))

.
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processor produces them very rapidly, as already described. Before the
eye moves on, the digit in the fovea gets started in the perceptual recogni-
tion “pipeline” already mentioned, and eventually the recognized LABEL
property of the object gets deposited in visual working memory. Mean-
while, the rule STOP-SCAKNING functions as an independent “demon” waiting
for an item to appear in visual working mMémory that matches the target.
As soon as it does, this rule shuts down th8'scanning process by removing
the item (STEP VISUAL-SWEEP) and then enables the rule MOVE-GAZE-AND:CURSOR-TO-TAR-
GET. This rule then launches an eye movement and mouse cursor move-
ment to the matching object. Thus, the search for the matching item is
conducted partially in parallel, because the process of recognizing the
labels for the desired object is overlapped in time with the eye movements
required to move the fovea between the objects. Using the same parame-
ters for the digit-recognition availability and time, this overlapping-search
model predicts the values shown in Figure 3; the model predicts a slope of
about 103 msec, which is an excellent match for the empirical value.

Implications for Eye and Hand Movements

This model makes claims about eye movements that might seem ex-
treme and that certainly are subject to empirical test. Also, this is not the
only possible EPIC model that could fit the data well, and there are
additional effects in Nilsen’s (1991) data to account for (see Hornof &
Kieras, 1997). However, it is important to see how the claims of this model
follow from the EPIC architecture. Because the menu items are uniformly
spaced along a single line, the eye movements between the items are
repeated movements, meaning that the feature structure of each move-
ment is identical to that of the previous movement. Once started, the eye
movements are very fast because the oculomotor-processor movement-
preparation time is zero, leaving only the execution time. The cognitive
processor simply commands each movement as soon as the oculomotor
processor is ready. After a visual stimulus has been foveated, it can
continue to be processed in the perceptual recognition pipeline while the
eye moves on to the next item. The fully parallel capability of EPIC’s
cognitive processor makes it a simple matter to completely overlap the
execution of the scanning process with the detection of the sought-for
item. Thus, one possibility that EPIC presents is that the relatively fast
menu selection time can be a simple result of scanning being done in
parallel with matching.

Another possible model would be based on the idea that more of the
menu items can be recognized outside the fovea (or the “effective” fovea is
larger). For example, if about three digits can be discriminated simultane-
ously, then the scanning strategy could simply move the eye in jumps large
enough to include each item in the “effective” fovea only once. This
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alternative model requires fewer, and less frequently executed, eye move-
ments but still produces the overall fast menu selection times. In addition,
there is another important effect in Nilsen’s (1991) unordered menu data:
Shorter menus are processed more rapidly across the board, which suggests
a random search strategy like that argued for by Card (1984). By assuming
that subjects perform a mixture of these different strategies, Hornof and
Kieras (1997) were able to account for these effects in Nilsen’s data. The
goal of this line of work is a unified account of menu selection in terms of
visual search and mouse pointing mechanisms, with the ultimate goal being
an evaluation tool for visual layout: Two designs for the visual layout of the
interface can be specified, and the corresponding EPIC models for the task
could be run to determine which interface demands more visual work in the
form of eye movements or perceptual delays.

An important detail in these results concerns the contribution of the
mouse-movement time, which is well known to follow Fitts’ law, a non-
linear function. However, both the predicted and observed times in these
results are rather linear—what happened to the mouse-movement time?
One possibility is that Nilsen’s (1991) subjects did not make single mouse
movements to the item but instead “scanned” the mouse cursor down the
menu, halting at the desired item, as suggested by Sears and Shneiderman
(1994). However, proposing that the eye could scan this rapidly is difficult
enough to accept; that the hand could be moved this quickly seems quite
implausible. A better and simpler explanation is the quantitative explana-
tion provided by EPIC. It happens that over the range of target sizes and
distances involved in Nilsen’s menus, the Fitts’-law times for mouse move-
ment are both relatively short compared to the total item-selection times
and are also very close to being linear. Consequently, the mouse-movement
time component of the total time does not result in noticeable nonlinearity.
Thus, in contrast to verbal reasoning about qualitative properties of effects,
detailed quantitative models such as EPIC can greatly clarify how different
component mechanisms actually contribute to task-execution time.

Conclusions

This work illustrates how even an elementary aspect of using an inter-
face can involve important and subtle aspects of the human performance

architecture. Also, it shows how the quantitative parameter values built

into EPIC inpose powerful constraints on what strategies can serve as
accurate models of cognitive processing. For example, it is possible to rule
out the serial-search strategy Because EPIC determines that the absolute
minimum times for moving the eye and making the decision for each item
leave no time for perceptual processing of the items. This minimum time,
in turn, is determined by EPIC’s feature representation of movements, in
which the similarity of the repeated eye movements resulting from the
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Figure 5. Production rule that enters each digit in the model for the telephone

operator task. The output from the auditory recognition identifies the key to b
struck by the manual motor processor. . 7 )

(*Enter-number®Get-next-digit

IF

{(GOAL Enter number) A
(STEP Get next digit) )
{WH Next speech is 2prev)
(AUDITORY SPEECH PREVIOUS 2prev NEXT tnext TYPE DIGIT CONTENT 2digit)
(VISUAL 222 SHAPE FIVE-KEY)
(MOTOR MANUAL PROCESSOR FREE))

THEN

({SEND-TO-MOTOR MANUAL PERFORM Peck digit)
(DELDB (WM Next speech is 2prev))
(ADDDB (WM Next speech is Inext))))

specific visual layout of the task means that they will take little time to
prepare. A final quantitative result provided by EPIC’s mechanisms con-
cerns the linearity of the selection-time function: The nonlinear compo-
nent contributed by the mouse-movement time is not sufficiently large,

given the specific layout of the menu, to produce a detectably nonlinear
selection-time function.

3.2. Auditorily Driven Keyboard Data Entry

Another illustration that even elementary HCI tasks can involve con-
siderable parallelism appears in modeling telephone operator tasks. A
skilled telephone operator can listen to a string of digits spoken by a
customer and enter them on a keypad while they are still being spoken.
During such processing, the auditory perceptual processor, the cognitive
processor, and the manual motor processor are operating simultaneously;
the cognitive processor plays the role of mediator between the auditory
and motor processors, feeding instructions to the motor processor as
rapidly as the recognized digits become available from the perceptual
processor and as soon as the motor processor is ready to accept instruc-
tions for another keystroke movement preparation. As part of Kieras et
al.’s (1997) work, this performance was examined and modeled in detail.

Overlapping Auditory and Manual Processing

The auditory processor produces a series of auditory working memory
items that contain the recognized digits recoded as identities of the keypad
keys, chained together to preserve the order in which they were heard.
Figure 5 shows a production rule, *Enter-number®Get-next-digit, from a model
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used in Kieras et al. (1997). The rule uses these recoded digits to make the
corresponding keystrokes in a “pipeline” fashion similar in spirit to John’s
(1996) model of transcription typing. Each recognized spoken digit is
represented in auditory working memory as a sequentially tagged item of
the form (AUDITORY SPEECH PREVIOUS prev NEXT ?next TYPE DIGIT CONTEN] 2digit), where the
variable 1digit represents the recoding supplied by the auditory perceptual
processor that designates the physical target of the correfponding key.

As.each digit arrives in working memory, the rule fires when the manual
motor processor has begun executing the previous keystroke, then sends
the keystroke command corresponding to the digit to the manual motor
processor, and also updates a “pointer” in WM to the next speech item in
auditory working memory to be processed. The rule also requires that
before the digit can be typed, the shape of the center key on the keypad, the
FIVE-KEY, must be in visual working memory to ensure that the target key is in
view. The manual motor processor uses the code for the digit key to prepare
the features for a peck-style movement to strike the key and then initiates
the prepared movement as soon as the hand is physically free to do so. The
preparation process takes 0 to 100 msec, depending on the similarity of the
present movement to the previous movement, while movement itself takes
50 msec to initiate, followed by a minimum of 100 msec to physically
execute. Thus, there is enough time during each keystroke execution to
prepare the features for the next keystroke, assuming that the cognitive
processor has provided the next keystroke instruction soon enough. If so,
then a sequence of keystrokes can be made quite rapidly, on the order of
150 to 200 msec apart. However, if the auditory input is not supplied
rapidly enough, the keystrokes will be slower, but exactly how much slower
depends on the subtle details of the event timing.

Buffering Effects

In the telephone operator task, the subtask of entering spoken digits is
part of a larger task in which the operator must determine from the
customer’s speech what keys to strike to indicate the billing category of the
call and then enter the billing numbers. The operator first indicates the
billing category by striking the STA-SPL-(LG key, then strikes the KP-SPL key to
signal that the billing number is about to be entered on the numeric keypad,
and, then, enters the billing number digits. Performance in the whole
telephone operator task was modeled by Kieras et al. (1997), but a special-
ized EPIC model was used to explore some of the details of the auditory
digit-entry subtask. In this model, the operator waits for the customer to
speak the first digit before striking the STASPL-(LG key, followed by the KP-SPL
key, and then strikes the digit keys according to the rule shown in Figure 5.

Individual stimulus and response timings were obtained from some of
the videotaped performances used in Kieras et al. (1997). Figure 6 shows
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Figure 6. Observed and predicted RTs for keystrokes made in response to speech
input. Observed RTs are solid points and lines; predicted RTs are open points and
dotted lines. The keystroke events are for four different task instances performed by
a single subject. Each task instance involves a different sequence of keystrokes made
in response to a billing request followed by digits spoken in a unique timing pattern.
The keystrokes are shown in temporal order on t:m horizontal axis.
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the observed and predicted RTs for each keystroke, measured from the
auditory stimulus event defined as the stimulus for that keystroke. The
observed RTs are from a set of four task instances performed by a single
operator, where each task instance was a unique interaction between a
customer and an operator, with a different sequence of digits, spoken in a
different timing pattern, from the other instances. Thus, the RTs shown in
Figure 6 are unaggregated, individual subject observations. Although
there is a tendency for the RT to decrease during the sequence of key-
strokes within a task instance, the RTs during this seemingly trivial task
vary tremendously, both within and between task instances.

The values predicted from the EPIC model capture the ‘general trend
that the first several keystrokes are substantially delayed by the need for
the previous keystrokes to be completed before the first digit keystroke.
Gradually, the digit keystrokes catch up because the customer is speaking
the digits at a lower average rate than they can be typed. The shortest RTs
occur when the processing has caught up to the point that there is no idle
waiting time. The auditory recognition parameter can be estimated as the
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difference between these observed shortest RTs and the predicted time for
the cognitive and motor processing to produce these keystrokes. This
parameter estimate, 400 msec, together with the earlier described strategy,
suffices to produce the observed complex profile of RTs in response to the
speech input. Given the single-observation quality of the data, the fit
between predicted and observed RTs is quite good. .

Conclusions

The model shows that many of the keystrokes in the task are delayed
more than the architecture requires, suggesting that performance could be
speeded up by changing the workstation design in two ways. First, if the
first two keystrokes could be eliminated or placed elsewhere in the task,
performance would be speeded up, and fewer digits would have to be
buffered in working memory. Second, if the customer spoke the digits at a
higher rate, or speech compression was used to produce the same effect,
the task could in fact be done faster on the average. Given that, in this task
domain, saving a second of average task time is credited with a consider-
able financial saving (Gray et al., 1993), the ability of EPIC to reveal these
detailed aspects of performance is an important result.

3.3. Eye Movements and Executive Control in a Simple
Dual Task

Computers are used not just in desktop or office settings but also in
real-time contexts such as airplane cockpits, where many of the displays
and controls are actually computer interfaces. As already mentioned,
EPIC has been developed to deal with multiple-task situations, such as
those in which a pilot has to track a target on one display and make
decisions using the information in another display. The spatial distribution
of visual information and the timing of eye movements play critical roles
in determining performance in such situations. In the remainder of this
article, we describe two studies, one involving a simple form of this
paradigm and the other involving a complex form.

We have modeled some results obtained by Martin-Emerson and Wick-
ens (1992) that are especially instructive about the role of eye movements

and the use of visual information during dual tasks. Figure 7 shows the . .

EPIC model display of the experimental task. The display represents the
visual environment of EPIC yith the objects in their correct sizes and
positions; the small gray circle marks the location and size of EPIC’s fovea,
currently on the choice stimulus, and the larger gray circle marks the
boundary of the parafovea, a region of intermediate discriminative ability.

The lower priority of the two tasks is a compensatory tracking task
carried out in the upper box of the display. A quasirandom perturbing
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Figure 7. EPIC model display for the Martin-Emerson and Wickens (1992) task. The

tracking task is in the upper square; the eye is fixated on the choice-stimulus arrow
appearing (not to scale) in the lower circle.

force drives the cursor (the cross) away from the target (the small circle),
and the subject must manipulate a joystick with the right hand to keep the
cursor centered on the target. The higher priority of the two tasks is a
choice-reaction task: Occasionally a stimulus appears in the choice-stimu-
lus area (the solid circle below the tracking box), which is either a left- or
right-pointing arrow (not shown to scale in the display). The subject must
respond by pressing one of two buttons with the left hand as soon as
possible, all the while attempting to maintain the cursor on the target.

The major independent variable is the distance (in visual angle) be-
tween the tracking target and the choice stimulus, and a second inde-
pendent variable is the difficulty of the tracking task. The two dependent
variables are the RT for the choice task and a measure of tracking perform-
ance (viz., the average root mean square error [RMSE] in the tracking task),
collected for a 2-sec period following the onset of the choice stimulus. The
observed effects are that the choice RT increases with the angular distance
between the target and the choice stimulus but is unaffected by tracking
difficulty. The RMSE increases somewhat with the angular distance for
both levels of tracking difficulty. . '

Our models for this dual-task situation assume that successful tracking
requires the eye to be kept on the tracking cursor, and likewise, the eye
must be moved to the choice stimulus in order to discriminate it. However,
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if the choice stimulus is close enough to the tracking cursor, parafoveal
vision will be adequate to discriminate the stimulus without moving the
eye. Hence, the two tasks often, but not always, compete for use of the eye.
Finally, because both tasks involve manual responses, they compete for
access to the manual motor processor. We illustrate h?w EPIC can be
applied to this task with two models. '

A Simple Lockout Model of Executive Control

The lockout model uses a simple strategy that is consistent with tradi-
tional thinking about dual-task situations; namely, the lower priority task is
locked out (suspended) while the higher priority task is executed. The
strategy is shown in Figure 8, where our attempt to portray parallel interac-
tive processes in flowchart form is explained as follows. The flowchart on
the left-hand side of Figure 8 diagrams the tracking task. The tracking-task
process waits for a cursor movement, and then it simply makes a motor
movement if the cursor is too far off the target and waits for another cursor
movement. In addition, another very simple iterative subprocess ensures
that the eye stays on the cursor in case the autonomous oculomotor mecha-
nism fails to keep up. On the right-hand side of Figure 8 is the flowchart for
the choice task. When the stimulus appears, there may be a delay while an
eye movement is made to it, followed by recognition of the stimulus and
selection and production of a response. The executive process is the flow-
chart in the center; it monitors and controls the other processes via items in
the production-system working memory; these relations are shown by the
dashed arrows. The executive first starts the tracking task, allocates control
of the eye to it, and then waits for the choice stimulus to appear. When the
stimulus appears, the executive process suspends the tracking task, enables
the choice-task rules, and then moves the eye to the stimulus if it is too far
away to be discriminated. The executive waits for the choice response to be
initiated, and then resumes the tracking task, and returns control of the eye
to it. In this way, using what we term lockoutscheduling, the executive process
allows only one task to be done at a time, ensuring that the choice task has
priority over the tracking task and that the eye and the manual motor
processor are used for only one task at a time.

Unfortunately, this simple strategy does not fit all aspects of the data.

Figure 9 shows the observed values for the choice RT and the tracking .

error together with the values predicted by the lockout model. By estimat-
ing the perceptual recognition time parameter from the data, we can fit the
choice RT function fairly well. As in the data, there is no effect of tracking
task difficulty because the choice task is given priority over tracking. The
first few points are fairly flat, because here the choice stimulus can be
recognized in the parafovea, and the eye does not need to be moved. The
upward slope of the curves at larger separations reflects the time required
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Figure 8. Flowchart of lockout-model strategy for the Martin-Emerson and Wickens
(1992) task, The tracking task is suspended whenever the choice task is executing. The

solid lines represent the flow of execution in each process; the dashed lines represent
signal and control relations.
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to move the eye. The fit of the simulated tracking data is extremely poor,
however. The magnitude of the tracking error is seriously overpredicted,
as are the effects of tracking difficulty and visual separation.

The lockout model cannot be made to fit the tracking data better by
adjusting the relevant parameter values; it is already using the minimum
plausible time estimates for all of the perceptual and motor parameters
involved. Because the RMSE is measured for a brief (2-sec) period of time
starting with the onset of the choice stimulus, if tracking is suspended for
too long during this period, the effect will be substantial. The lockout
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diffi-
9. Observed and predicted effects of stimulus separation and tracking
culty for the lockout model. Observed values are solid points and lines; predicted
values are open points and dotted lines. Square points are for the difficult-tracking
condition; circular points are for the easy-tracking condition. The fit of the choice RT
is satisfactory, but predicted tracking performance is far too poor.
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model suspends the tracking task for such a long time that considerable
tracking error accumulates; it is simply too inefficient.

An Interleaved Model of Exgcutive Control

In order to provide a more efficient strategy, we constructed a second
model, the interleaved model, in which the executive process overlaps the
two tasks as much as possible; this strategy is shown in Figure 10. The
executive process starts out the same as in the lockout model, but when the
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Figure 70. Flowchart of the interleaved model for the Martin-Emerson and Wickens
(1992) task. The tracking task is executed while choice stimulus recognition and
response selection go on and is interrupted for the minimum necessary time.

Choice Response

choice stimulus appears, the executive moves the eye to it and then
immediately begins to move the eye back to the tracking task, relying on
the “pipeline” property .of the visual system to acquire the stimulus and
continue to process it even after the eye has returned to the tracking
cursor. The tracking task is suspended only while the eye is away looking
at the stimulus for the choice task. The executive then uses the same
approach as in our PRP models for allocating control of the manual motor
processor. When the choice task has chosen the response, it signals the
executive, which again suspends the tracking task, gives the choice task
permission to command the manual motor processor, and then resumes
the tracking task right away. Thus, the same task priorities are honored,
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but the tracking task is interrupted as little as possible. The predictions
from this model are shown in Figure 11. The choice RTs are again well fit,
but now the tracking-task predictions are extremely close as well. Because
the executive allocates the eye and the manual motor processor to the
tracking task for the maximum amount of time, the tracking task rules can
squeeze in a few movements while the choice task is undbrway, resulting
in substantially better tracking error than in the lockout nfodel.

Conclusions

As mentioned earlier, control of the eye has often been unappreciated,
but it can clearly be critical in dual-task paradigms. A more subtle result is
that subjects can and apparently do use highly refined strategies that can
be surprisingly efficient for coordinating dual tasks. As an aside, in this
model the executive handles the use of the eye directly, by moving it to
the stimulus for the appropriate task. An alternative is to let each task
move the eye itself, with the executive granting permission to move the
eye to the appropriate task. This latter approach is the one followed in the
complex dual-task model to be discussed.

An important general conclusion well illustrated by this particular
modeling work concerns a common misunderstanding about computa-
tional models. They do not in fact have so many “degrees of freedom” that
they can be made to fit any data at any time. Working within the fixed
EPIC architecture sets powerful constraints. Given the basic lockout strat-
egy, there are no parameter values or specific strategy details that would
allow us to fit the data as a whole. The only way an EPIC model could fit
the data is by assuming a fundamentally different strategy. Thus, a general
conclusion (see also Meyer & Kieras, 1997b) is that the exercise of seeking
quantitatively accurate accounts of data within a fixed architecture is
extremely informative both about the accuracy of the architecture itself
and about the structure and requirements of the task.

3.4. A Complex Dual Task With Automation

Our modeling work on the Martin-Emerson and Wickens (1992) task
laid the foundations for our work on a more complex dual tracking/choice
task. This task was developed by Ballas, Heitmeyer, and Perez (1992a,
1992b) to resemble a class of tasks performed in combat aircraft in which
analyzing the tactical situation is partially automated by an on-board
computer. To help with our explanation, we show the EPIC model display
for this task in Figure 12. The sight-hand box contains a pursuit-tracking
task in which the cursor (cross) must be kept on the target (small box). In
the experiment reported by Ballas et al., average tracking-error data were
collected during various phases of the experiment. The left-hand box
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Figure 71. Observed and predicted effects of stimulus separation and tracking diffi-
culty for the interleaved model. Observed values are solid points and lines; predicted
values are open points and dotted lines. Square points are for the difficult-tracking

condition; circular points are for the easy-tracking condition. The fit is good for both
choice RT and tracking error.
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contains the choice task, a tactical decision task in which targets (or
“tracks”) must be classified as hostile or neutral based on their behavior.
EPIC’s eye is shown currently on one of the targets. These targets repre-
sent fighter aircraft, cargo airplanes, and missile sites that move down the
display as the subject’s aircraft travels. Ballas et al. collected choice RT
data during performance of the tactical-decision task.

In the actual Ballas et al. (1992a) display, each type of target was coded
by an icon; for simplicity, in the EPIC display, they are represented
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Figure 12. EPIC model lay for the Ballas et al. (1992a, 1992b) task. The tracking-
task u::et and cursor ‘;di:p on {he right; four targeis are moving down the tactical-de-
cision task display on the left. The small open rectangle on the bottom left represents
the response keypad, which has been displaced from its actual position for conven-
jence; the small solid rectangle represents the current position of the finger used to
“peck” keys. The eye has been positioned on the biue targ:t, and one of the

keystrokes is in progress.
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instead by a code letter. A track number identifies each obj.ect. Targets
appear near the top of the display and then move down the display. After
some time, the on-board computer attempts to designate the targets,
indicating the outcome by changing the target color from black to red,
blue, or amber, which the EPIC display shows with a thl:ee-charact?r
abbreviation. The subject must respond to the color change in a target in
one of two ways. If the target becomes red (hostile) or blue (neutral) th.e
subject must simply confirm the computer’s classification; the response is
striking a key for the hostile/neutral designation followed by a key for the

track number. If the target becomes amber, the subject must classify the.

target based on a set of rules concerning the target’s behavior and then
type the hostility designation,and track number. After the response, the
target changes color to white and then disappears from the display some
time later. The basic dependent variable is the two RTs for the targets,
measured from when the target changes color to when the first and second
of the two response keystrokes are made.

EPIC AND HCI 431

Ballas et al. (1992a, 1992b) investigated different interfaces for the
tactical task. Our earlier description pertains to one of the four interfaces;
the other three interfaces involved using a tabular display instead of the
graphical radar-like display and a touchscreen instead of a keypad. The
model presented here accounts for performance for the graphical-keypad
interface already described. Additional dork is underway on the other
display and response formats. v :

A Performance Deficit Produced by Automation

Ballas et al. (1992a, 1992b) examined the effects of adaptive automation.
These effects arise when, from time to time, the tracking task becomes
more difficult, and the on-board computer takes over the tactical task,
signaling as it does so. The computer then generates the correct responses
to each target at the appropriate time, with the color changes showing on
the display as in the manual version of the task. Later, the tracking
becomes easy again, so the computer signals and then returns the tactical
task to the subject; the experiment is arranged so that the subject must
resume the tactical task when several black targets are on the display and
one target has simultaneously changed color. Under such conditions,
Ballas et al. observed an automation deficit effect in which, for a time after
resuming the tactical task, subjects produced longer response times in the
tactical task compared to their usual steady-state manual performance.
This effect raises serious concerns about possible negative consequences
of automation in combat situations; if the automation fails, the operator
can lack situation awareness, and it might take a dangerously long time to
catch up.

A Model for the Ballas Task

From single-task performance, we estimated the parameters for the
basic perceptual encoding operations required in the tactical task, namely,
recoding the blue and red colors to the appropriate key and recognizing
the hostility of different kinds of targets, which takes considerably longer
(more than a second). We have assumed that assessing the hostility of a
target requires the target to be visually fixated, but that a target’s color is
available parafoveally, and that color-change events (which result in lumi-
nance changes) are visible in peripheral vision along with object onsets
and offsets. Thus, when doing the tracking task, a color-change event in
the tactical task can be detected, and this event can be used to tell that the
tactical task requires action. However, like other transient events, this
information will disappear from visual working memory quickly unless the
task strategy involves recoding it into a more durable working memory
form. After the eye has been moved to the tactical-task display, the colors
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of all of the individual targets will usually become available, because most
often they will fall in the parafovea.

Our model for this task and interface uses a lockout strategy at the top
level of coordinating the tracking task and the tactical task but involves
considerable parallelism within the tactical task. When tl)e tactical task is
the responsibility of the human (as opposed to that of the on-board
computer), the executive process allows the tracking tasKto run until it is
time to work on the tactical-decision task. In the meantime, the executive
process simply notes that a target has appeared and continues tracking.
The executive waits for a target to change color or to get too close to the
centermost ownship circle; these events can be detected in peripheral
vision, but the responsible target or color cannot be. The executive then
suspends the tracking task and allocates the eye to the tactical task. The
tactical task follows a priority scheme in choosing which target to view and
process: Targets with a designation color (amber, red, or blue) are first
priority, followed by targets whose color has changed, followed by targets
whose color is unknown, and finally followed by an undesignated (black)
target that is close to the ownship circle. If no targets qualify, the tactical
task terminates, and the executive resumes the tracking task. If there is a
qualifying target, the eye is moved to the chosen target; if there is more
than one qualifying target at the same level of priority, one is chosen at
random. The appropriate response is then made about the hostility of the
target when the perceptual information (color coding or hostility behavior)
becomes available; then the tactical-task process moves the eye to the
target track number, and when the label is available, the corresponding
response is chosen and made. After the second response is on its way to
the manual motor processor, the process of choosing a new target begins
in parallel with completion of the response. Thus, the tactical task has
three major phases: choosing the stimulus to be processed and selecting
and producing each of the responses for the chosen stimulus. Much of
these three processes can be overlapped.

An Explanation for Automation Deficit

Our hypothesis about the source of the automation-deficit effect is that
when resuming the tactical task, the tactical-task strategy must sort out a
large number, of targets, whereas during steady-state tactical-task opera-
tion, the targets are handled as they appear. That is, we assume that when
the tactical task is automated, the subject does not bother to store any
information about the state of the tactical display in working memory.
Thus, when it is time to resume the tactical task, multiple targets are
present on the tactical display, and there is no record in working memory
of which have changed colors or when the color changes occurred. Thus,
the information required to choose a target according to the priority
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Figure 13. Automation deficit effect shown in the observed and predicted RTs for

events following resumption of the tactical task. Observed RTy are solid points and

lines; predicted RTs are open points and dotted lines. The lower curve is for the

hostility-designation RT; the upper curve is for the track-number RT. Starting with

Event 1, the events are closely spaced, and responses are delayed and then speed up

as the tactical task catches up with the dmﬁ;t Event 7 begins a similar matched
4

sequence of closely spaced events, but the task is performed as needed and
30 is able to keep up. .

L]
© + 2 3 4 5 6 7 8 8 10
Event

scheme is missing, so the tactical-task strategy simply picks the first target
to inspect at random. After moving the eye to it and waiting for the color
to become available, the strategy processes the target as usual if it is red,
blue, or amber. However, if the target is white or black, it cannot be
processed, and so another target is picked at random according to the
priority scheme. When all candidate targets have been dealt with, tracking
is resumed, and future target changes are processed as they appear.

The automation deficit results because when the tactical task is being
performed normally, targets are usually processed in the order in which
they change color, keeping the average RT to a minimum. In contrast,
when the tactical task is resumed after automation, multiple targets must
be inspected, and no information has been kept on the order in which they
have appeared or changed color (otherwise, the automation is of little
value!). Thus, the targets are inspected in random order, so targets that
changed first will have to wait longer on average to be inspected than if
they were processed as soon as they changed colors.

Figure 13 shows some automation deficit results obtained with the
model in comparison to detailed data (supplied by James Ballas) that
includes both RTs for correct responses only. The graph shows the pre-
dicted and observed RTs for each of the two responses for each target,
measured from the time that they become designated (change color), in
the order in which the targets become designated after the tactical task is
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. Thus, Event 1 corresponds to the first color change of a target

:‘;ts;-mt:gk resumption, Event 2pto the second, and so forth. The overall
ity of the fit is very good.

qui;t);;Poth featur); %)f these data is that the tempox:al s;.)aci'ng of events
was systematically varied. Starting with Event 1, which is simultaneous
with the signal to resume the tactical task, the events happen close togethe.r
in time, and then thin out until by Event 6, usually orﬁ)" one target is
present on the display; a matched pattern of event spacing starts with
Event 7. Thus, the tactical processing is not evenly paced; there are two
matched periods of high workload followed by easy stretches.

The Event 1 RT is long because the tactical task is started on!y af?er the
auditory resumption signal has been recognized, an.d then it will .fre-
quently look at some other target first, further delaying .the processing.
Event 2 occurs very soon after Event 1, and so responding to it is also
seriously delayed because it must wait for the delayed processing of Event
1 to be completed. The increasing event spacing allows tl.xe tac.txcal task to
gradually catch up, resulting in decreasing RTs. But starting with Event 7,
the events are closely spaced again, and subsequent events suffer from.the
processing delays that again dissipate with the increasing event spacing.
However, because the state of the display is being monitored at the time
of Event 7, the tactical task is able to find its target much more quxckly thafx
is the case at Event 1. Thus, the effects of event spacing are more serious if
the tactical-display monitoring is just being resumed than if it was ongoing.
Ballas et al. (1992a, 1992b) defined the automation deficit effect as the
difference between the Event 1 RT and the RT for a matched subsequent
event, Event 7. The model accounts for this measure quite accurately.

Relation to Elementary Dual-Task Phenomena

Modeling this task has revealed a remarkable continuity w:th our earlier
modeling work with EPIC on the PRP task mentioned ea.rher.(Meyer. &
Kieras, 1997a, 1997b). The PRP task consists of two overlappx.ng choice
RT tasks; the major effect is that responding to the second task is del.ayec!
while the first response is being made. As the time between the two stimuli
is increased, the RT to the second task declines toward its smgle-ta:sk
value. We chose the PRP effect as the first phenomenon to address with
EPIC because it was the simplest laboratory version of a dual-t’ask para-
digm and thus a good starting point. However, even Ballas et al.’s (1'992a,
1992b) complex simulated-cockpit task produces PRP effects;.that is, the
declining RT pattern for the first six events in Figure 13 is a kind qf PRP
effect; the initial slow responses that gradually speed up as the stimulus
spacing increases are due to exactly the same factors that govern the P.RP
effect in simpler laboratory paradigms. In other words, the automation
deficit effect is a form of PRP effect. Our thorough understanding of PRP
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effects from the earlier modeling work has allowed us to account for
performance of this realistically complex task in quantitative detail.

Conclusions

Our explanation for the automation dekicit may have important impli-
cations for display and task design. For t'ﬁcample, according to this hy-
pothesis, resuming the tactical task could be done more efficiently if it is
possible to easily select the highest priority object on the display at that
time. That is, suppose the first-changed object currently on the display was
coded by making it blink, which would be salient in peripheral vision.
Then, the subject could simply look directly at the blinking object in order
to ensure that the objects were processed in priority order. Alternatively,
the automated version of the task could use a different, less salient way of
representing its activity, so that the subject could still profitably monitor
for the same perceptual events that are important in the manual version.
Not only does the EPIC architecture supply a theoretical framework in
which such issues can be explored and resolved in rigorous detail, but
EPIC models can also be used to evaluate and predict the effects of the
design changes implied by the explanations.

4. GENERAL CONCLUSIONS

EPIC is a computational architecture for constructing models of human
cognition and performance that represent the contributions and interac-
tions of perceptual and motor mechanisms as well as cognition in deter-
mining the time course of task execution. The examples presented in this
article illustrate how EPIC can be applied to a variety of situations in
which humans interact with computers both at the level of elemen
interactions (e.g., menu operation and data entry) and at the level of
high-speed concurrent execution of multiple display-intensive tasks. By
accounting for empirical data with high accuracy in an architectural frame-
work, models constructed with EPIC provide explanations for task phe-
nomena with a clarity and precision far beyond the informal theorizin
usually deployed in the HCI field. Further work with EPIC should lead to
a comprehensive and predictive theoretical account of human perform-
ance in complex high-performance multimodal tasks.

At this point, EPIC is a research system that is not in a form suitable for
routine use by system or interface designers. However, there is a technol-
ogy transfer precedent: Earlier work with the CCT production rule models
for HCI (Bovair et al., 1990) led to a practical interface design technique
(John & Kieras, 1996; Kieras, 1988). Likewise, as the EPIC architecture
stabilizes, and experience is gained in applying it to human-system analy-
sis problems, we should be able to devise a simplified approach that will
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enable designers to apply EPIC to develop improved human-system
interfaces.

Our experience with the EPIC architecture also suggests some meta-
level conclusions about the role of cognitive modeling in the science and
engineering fields of human performance and human—syss?m interaction:

o Computational models based on human information®processing the-
ary can usefully predict details of human performance in system
design and evaluation situations.

¢ Developing and applying a cognitive model to task situations rele-
vant to real design problems is a demand test of cognitive theory; if
the theory successfully represents important properties of human
abilities, it should in fact be useful in practical settings.

e Powerful constraints are imposed by quantitatively fitting fixed-
architecture models to detailed performance data, which lead to the
discovery of plausible task strategies.

In short, a comprehensive, detailed, and quantitative theory of human
cognition and performance is the best basis for applied cognitive psychol-
ogy. Rather than relying only on general psychological principles or on
brute-force application of experimental methodology, system design can
be best informed by using a theory that addresses phenomena at the same
level of detail as design decisions require.
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